Adaptive Selection of Face Coarse Degrees of Freedom in the BDDC and the FETI-DP Iterative Substructuring Methods
نویسنده
چکیده
We propose a class of method for the adaptive selection of the coarse space of the BDDC and FETI-DP iterative substructuring methods. The methods work by adding coarse degrees of freedom constructed from eigenvectors associated with intersections of selected pairs of adjacent substructures. It is assumed that the starting coarse degrees of freedom are already sufficient to prevent relative rigid body motions in any selected pair of adjacent substructures. A heuristic indicator of the the condition number is developed and a minimal number of coarse degrees of freedom is added to decrease the indicator under a given threshold. It is shown numerically on 2D elasticity problems that the indicator based on pairs of substructures with common edges predicts the actual condition number reasonably well, and that the method can select adaptively the hard part of the problem and concentrate computational work there to achieve good convergence of the iterations at a modest cost.
منابع مشابه
Adaptive Coarse Space Selection in the BDDC and the FETI-DP Iterative Substructuring Methods: Optimal Face Degrees of Freedom
We propose adaptive selection of the coarse space of the BDDC and FETI-DP iterative substructuring methods by adding coarse degrees of freedom (dofs) on faces between substructures constructed using eigenvectors associated with the faces. Provably the minimal number of coarse dofs on the faces is added to decrease the condition number estimate under a target value specified a priori. It is assu...
متن کاملBDDC Algorithms for Incompressible Stokes Equations
The purpose of this paper is to extend the BDDC (balancing domain decomposition by constraints) algorithm to saddle-point problems that arise when mixed finite element methods are used to approximate the system of incompressible Stokes equations. The BDDC algorithms are iterative substructuring methods, which form a class of domain decomposition methods based on the decomposition of the domain ...
متن کاملOn the Equivalence of Primal and Dual Substructuring Preconditioners
After a short historical review, we present four popular substructuring methods: FETI-1, BDD, FETI-DP, BDDC, and derive the primal versions to the two FETI methods, called PFETI-1 and P-FETI-DP, as proposed by Fragakis and Papadrakakis. The formulation of the BDDC method shows that it is the same as P-FETI-DP and the same as a preconditioner introduced by Cros. We prove the equality of eigenval...
متن کاملAn Iterative Substructuring Algorithm for Two-Dimensional Problems in H(curl)
A domain decomposition algorithm, similar to classical iterative substructuring algorithms, is presented for two-dimensional problems in the space H0(curl; Ω). It is defined in terms of a coarse space and local subspaces associated with individual edges of the subdomains into which the domain of the problem has been subdivided. The algorithm differs from others in three basic respects. First, i...
متن کاملFETI–DP, BDDC, and Block Cholesky Methods
Two popular non-overlapping domain decomposition methods, the FETI–DP and BDDC algorithms, are reformulated using Block Cholesky factorizations, an approach which can provide a useful framework for the design of domain decomposition algorithms for solving symmetric positive definite linear system of equations. Instead of introducing Lagrange multipliers to enforce the coarse level, primal conti...
متن کامل